An H1-galerkin Mixed Finite Element Method for Parabolic Partial Differential Equations∗
نویسنده
چکیده
In this paper, an H1-Galerkin mixed finite element method is proposed and analyzed for parabolic partial differential equations with nonselfadjoint elliptic parts. Compared to the standard H1-Galerkin procedure, C1-continuity for the approximating finite dimensional subspaces can be relaxed for the proposed method. Moreover, it is shown that the finite element approximations have the same rates of convergence as in the classical mixed method, but without LBB consistency condition and quasiuniformity requirement on the finite element mesh. Finally, a better rate of convergence for the flux in L2-norm is derived using a modified H1-Galerkin mixed method in two and three space dimensions, which confirms the findings in a single space variable and also improves upon the order of convergence of the classical mixed method under extra regularity assumptions on the exact solution.
منابع مشابه
H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations
H1-Galerkin mixed finite element methods are analysed for parabolic partial integrodifferential equations which arise in mathematical models of reactive flows in porous media and of materials with memory effects. Depending on the physical quantities of interest, two methods are discussed. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one sp...
متن کاملWeak Galerkin Finite Element Method for Second Order Parabolic Equations
We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...
متن کاملA Finite Element Method for Martingale-driven Stochastic Partial Differential Equations
The main objective of this work is to describe a Galerkin approximation for stochastic partial differential equations driven by square– integrable martingales. Error estimates in the semidiscrete case, where discretization is only done in space, and in the fully discrete case are derived. Parabolic as well as transport equations are studied.
متن کاملA discontinuous Galerkin method for the Cahn-Hilliard equation
A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite elemen...
متن کاملA new positive definite semi-discrete mixed finite element solution for parabolic equations
In this paper, a positive definite semi-discrete mixed finite element method was presented for two-dimensional parabolic equations. In the new positive definite systems, the gradient equation and flux equations were separated from their scalar unknown equations. Also, the existence and uniqueness of the semi-discrete mixed finite element solutions were proven. Error estimates were also obtaine...
متن کامل